Drosophila neurexin IV interacts with Roundabout and is required for repulsive midline axon guidance.

نویسندگان

  • Swati Banerjee
  • Kevin Blauth
  • Kimberly Peters
  • Stephen L Rogers
  • Alan S Fanning
  • Manzoor A Bhat
چکیده

Slit/Roundabout (Robo) signaling controls midline repulsive axon guidance. However, proteins that interact with Slit/Robo at the cell surface remain largely uncharacterized. Here, we report that the Drosophila transmembrane septate junction-specific protein Neurexin IV (Nrx IV) functions in midline repulsive axon guidance. Nrx IV is expressed in the neurons of the developing ventral nerve cord, and nrx IV mutants show crossing and circling of ipsilateral axons and fused commissures. Interestingly, the axon guidance defects observed in nrx IV mutants seem independent of its other binding partners, such as Contactin and Neuroglian and the midline glia protein Wrapper, which interacts in trans with Nrx IV. nrx IV mutants show diffuse Robo localization, and dose-dependent genetic interactions between nrx IV/robo and nrx IV/slit indicate that they function in a common pathway. In vivo biochemical studies reveal that Nrx IV associates with Robo, Slit, and Syndecan, and interactions between Robo and Slit, or Nrx IV and Slit, are affected in nrx IV and robo mutants, respectively. Coexpression of Nrx IV and Robo in mammalian cells confirms that these proteins retain the ability to interact in a heterologous system. Furthermore, we demonstrate that the extracellular region of Nrx IV is sufficient to rescue Robo localization and axon guidance phenotypes in nrx IV mutants. Together, our studies establish that Nrx IV is essential for proper Robo localization and identify Nrx IV as a novel interacting partner of the Slit/Robo signaling pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axon repulsion from the midline of the Drosophila CNS requires slit function.

Guidance of axons towards or away from the midline of the central nervous system during Drosophila embryogenesis reflects a balance of attractive and repulsive cues originating from the midline. Here we demonstrate that Slit, a protein secreted by the midline glial cells provides a repulsive cue for the growth cones of axons and muscle cells. Embryos lacking slit function show a medial collapse...

متن کامل

The function of leak and kuzbanian during growth cone and cell migration

Axonal growth cones require an evolutionary conserved repulsive guidance system to ensure proper crossing of the CNS midline. In Drosophila, the Slit protein is a repulsive signal secreted by the midline glial cells. It binds to the Roundabout receptors, which are expressed on CNS axons in the longitudinal tracts but not in the commissural tracts. Here we present an analysis of the genes leak a...

متن کامل

The Adam family metalloprotease Kuzbanian regulates the cleavage of the roundabout receptor to control axon repulsion at the midline.

Slits and their Roundabout (Robo) receptors mediate repulsive axon guidance at the Drosophila ventral midline and in the vertebrate spinal cord. Slit is cleaved to produce fragments with distinct signaling properties. In a screen for genes involved in Slit-Robo repulsion, we have identified the Adam family metalloprotease Kuzbanian (Kuz). Kuz does not regulate midline repulsion through cleavage...

متن کامل

Short-Range and Long-Range Guidance by Slit and Its Robo Receptors Robo and Robo2 Play Distinct Roles in Midline Guidance

Previous studies showed that Roundabout (Robo) in Drosophila is a repulsive axon guidance receptor that binds to Slit, a repellent secreted by midline glia. In robo mutants, growth cones cross and recross the midline, while, in slit mutants, growth cones enter the midline but fail to leave it. This difference suggests that Slit must have more than one receptor controlling midline guidance. In t...

متن کامل

Receptor tyrosine phosphatases regulate axon guidance across the midline of the Drosophila embryo.

Neural receptor-linked protein tyrosine phosphatases (RPTPs) are required for guidance of motoneuron and photoreceptor growth cones in Drosophila. These phosphatases have not been implicated in growth cone responses to specific guidance cues, however, so it is unknown which aspects of axonal pathfinding are controlled by their activities. Three RPTPs, known as DLAR, DPTP69D, and DPTP99A, have b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 16  شماره 

صفحات  -

تاریخ انتشار 2010